5 found
Order:
  1.  15
    The sociobiology of genes: the gene’s eye view as a unifying behavioural-ecological framework for biological evolution.Alexis De Tiège, Yves Van de Peer, Johan Braeckman & Koen B. Tanghe - 2018 - History and Philosophy of the Life Sciences 40 (1):1-26.
    Although classical evolutionary theory, i.e., population genetics and the Modern Synthesis, was already implicitly ‘gene-centred’, the organism was, in practice, still generally regarded as the individual unit of which a population is composed. The gene-centred approach to evolution only reached a logical conclusion with the advent of the gene-selectionist or gene’s eye view in the 1960s and 1970s. Whereas classical evolutionary theory can only work with (genotypically represented) fitness differences between individual organisms, gene-selectionism is capable of working with fitness differences (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  2.  62
    The sociobiology of genes: the gene’s eye view as a unifying behavioural-ecological framework for biological evolution.Alexis De Tiège, Yves Van de Peer, Johan Braeckman & Koen B. Tanghe - 2017 - History and Philosophy of the Life Sciences 40 (1):6.
    Although classical evolutionary theory, i.e., population genetics and the Modern Synthesis, was already implicitly ‘gene-centred’, the organism was, in practice, still generally regarded as the individual unit of which a population is composed. The gene-centred approach to evolution only reached a logical conclusion with the advent of the gene-selectionist or gene’s eye view in the 1960s and 1970s. Whereas classical evolutionary theory can only work with fitness differences between individual organisms, gene-selectionism is capable of working with fitness differences among genes (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  3.  88
    From DNA- to NA-centrism and the conditions for gene-centrism revisited.Alexis De Tiège, Koen Tanghe, Johan Braeckman & Yves Van de Peer - 2014 - Biology and Philosophy 29 (1):55-69.
    First the ‘Weismann barrier’ and later on Francis Crick’s ‘central dogma’ of molecular biology nourished the gene-centric paradigm of life, i.e., the conception of the gene/genome as a ‘central source’ from which hereditary specificity unidirectionally flows or radiates into cellular biochemistry and development. Today, due to advances in molecular genetics and epigenetics, such as the discovery of complex post-genomic and epigenetic processes in which genes are causally integrated, many theorists argue that a gene-centric conception of the organism has become problematic. (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  4.  55
    From 2R to 3R: evidence for a fish‐specific genome duplication (FSGD).Axel Meyer & Yves Van de Peer - 2005 - Bioessays 27 (9):937-945.
    An important mechanism for the evolution of phenotypic complexity, diversity and innovation, and the origin of novel gene functions is the duplication of genes and entire genomes. Recent phylogenomic studies suggest that, during the evolution of vertebrates, the entire genome was duplicated in two rounds (2R) of duplication. Later, ∼350 mya, in the stem lineage of ray‐finned (actinopterygian) fishes, but not in that of the land vertebrates, a third genome duplication occurred—the fish‐specific genome duplication (FSGD or 3R), leading, at least (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  5.  20
    Recent developments in computational approaches for uncovering genomic homology.Cedric Simillion, Klaas Vandepoele & Yves Van de Peer - 2004 - Bioessays 26 (11):1225-1235.
    Identifying genomic homology within and between genomes is essential when studying genome evolution. In the past years, different computational techniques have been developed to detect homology even when the actual similarity between homologous segments is low. Depending on the strategy used, these methods search for pairs of chromosomal segments between which either both gene content and order are conserved or gene content only. However, due to fact that, after their divergence, homologous segments can lose a different set of genes, these (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation